
Robert K. Majwala, MD, MA Health Policy Fellow, Cohort 2016
Outbreak Reported

- 14th Oct. 2016, PHEOC notified of a measles outbreak in Mayuge District
- 3/10 samples tested measles IgM+
- DHT reported increased numbers of children with fever and rash in the district since Aug. 2016
Objectives

- Determine extent of the outbreak
- Estimate vaccination coverage
- Calculate vaccine effectiveness
- Recommend control measures
Case Definitions

- Probable case: Fever ≥ 3 days and generalized rash with ≥ 1, conjunctivitis, cough or running nose
- Confirmed case: Probable case with measles IgM(+) in absence of vaccination in last two weeks
Case Finding

- Reviewed health facility records
- Community case finding with the help of village health teams, community leaders and health assistants
Cases found

<table>
<thead>
<tr>
<th>Cases</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probable</td>
<td>59</td>
</tr>
<tr>
<td>Confirmed</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>62</td>
</tr>
</tbody>
</table>
Epidemic Curve

17-Oct. 16 Start of Investigation
14-Oct. 16 Outbreak Declared

Date of Rash Onset

Measles cases

Kityerera & Malongo Sub-counties Had Similar Attack Rates

<table>
<thead>
<tr>
<th>Sub-county</th>
<th>Kityerera</th>
<th>Malongo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>49,330</td>
<td>105,831</td>
</tr>
<tr>
<td>Cases</td>
<td>20</td>
<td>42</td>
</tr>
<tr>
<td>AR/10,000</td>
<td>4.1</td>
<td>4.0</td>
</tr>
</tbody>
</table>

Central Busoga Forest Reserve
Males and Females Had Similar Attack Rates

<table>
<thead>
<tr>
<th>Sub-county</th>
<th>AR/10,000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Male</td>
</tr>
<tr>
<td>Kityerera</td>
<td>4.6</td>
</tr>
<tr>
<td>Malongo</td>
<td>3.9</td>
</tr>
</tbody>
</table>
Bumwena Parish Had Highest Attack Rate

<table>
<thead>
<tr>
<th>Sub-county</th>
<th>Parish</th>
<th>Cases</th>
<th>Population</th>
<th>AR/10,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malongo</td>
<td>Bumwena</td>
<td>21</td>
<td>2,649</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Bukatabira</td>
<td>4</td>
<td>5,167</td>
<td>7.7</td>
</tr>
<tr>
<td>Malongo</td>
<td></td>
<td>10</td>
<td>17,971</td>
<td>5.6</td>
</tr>
<tr>
<td>Namoni</td>
<td></td>
<td>3</td>
<td>5,790</td>
<td>5.2</td>
</tr>
<tr>
<td>Buluuta</td>
<td></td>
<td>2</td>
<td>11,852</td>
<td>1.7</td>
</tr>
<tr>
<td>Namadhi</td>
<td></td>
<td>1</td>
<td>6,373</td>
<td>1.6</td>
</tr>
<tr>
<td>Bukalenzi</td>
<td></td>
<td>1</td>
<td>11,500</td>
<td>0.9</td>
</tr>
<tr>
<td>Kityerera</td>
<td>Kityerera</td>
<td>18</td>
<td>13,449</td>
<td>13</td>
</tr>
<tr>
<td>Maumu</td>
<td></td>
<td>1</td>
<td>4,392</td>
<td>2.3</td>
</tr>
</tbody>
</table>
Age Group 0 – 59 Months Most Affected

<table>
<thead>
<tr>
<th>Age (Months)</th>
<th>Count</th>
<th>Population</th>
<th>AR/10,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 11</td>
<td>9</td>
<td>6,672</td>
<td>13</td>
</tr>
<tr>
<td>12 - 59</td>
<td>38</td>
<td>24,671</td>
<td>15</td>
</tr>
<tr>
<td>60+</td>
<td>15</td>
<td>123,818</td>
<td>1.2</td>
</tr>
<tr>
<td>Total</td>
<td>62</td>
<td>155,161</td>
<td>4.0</td>
</tr>
</tbody>
</table>
Estimation of Vaccine Effectiveness & Vaccination Coverage

- Case-Control Study
- Ratio 1:4
- 41 cases:164 controls
- Matched by age and residence
- Collected information vaccination status during exposure period i.e. 7 – 21 days before onset of rash
Measles Vaccination is Protective

<table>
<thead>
<tr>
<th>Risk Factor</th>
<th>Cases n=31</th>
<th>Controls n=121</th>
<th>OR$_{MH}$ (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measles vaccination (9 – 59 months)</td>
<td>39%</td>
<td>68%</td>
<td>0.31 (0.12 – 0.75)</td>
</tr>
</tbody>
</table>
Estimation of Vaccine Effectiveness

- $\text{VE} = 1 - RR$
- $\approx \text{OR}$ for rare diseases
- $\text{VE} = 1 - 0.31$

$$= 0.69 \times 100 = 69\% \ (95\% \ CI: 25 - 88)$$
Measles Vaccination Coverage

- 68% (95% CI: 61 – 76)
- Below the recommended at least 80% target for a district
Two children travel from Malongo to Kityerera
Propagated Outbreak Bumwena Parish
Propagated Outbreak Bumwena Parish

Propagated Outbreak Bumwena Parish

Propagated Outbreak Bumwena Parish

Propagated Outbreak Bumwena Parish

Propagated Outbreak Bumwena Parish

Measles Cases

Date of Rash Onset

Propagated Outbreak Bumwena Parish

Measles Cases

Date of Rash Onset

Propagated Outbreak Bumwena Parish

Propagated Outbreak Bumwena Parish

Measles Cases

Date of Rash Onset

Propagated Outbreak Bumwena Parish

Measles Cases

Date of Rash Onset

Propagated Outbreak Bumwena Parish

Propagated Outbreak Bumwena Parish

Propagated Outbreak Bumwena Parish

Propagated Outbreak Bumwena Parish

Measles Cases

Date of Rash Onset

Propagated Outbreak Bumwena Parish

Propagated Outbreak Bumwena Parish

Date of Rash Onset

Measles Cases

Kityerera Sub-county Propagated Outbreak

9th Aug. mother of two travels from Nakigo to Kityerera
Kityerera Sub-county Propagated Outbreak

9th Aug. mother of two travels from Nakigo to Kityerera

Kityerera Sub-county Propagated Outbreak

9th Aug. mother of two travels from Nakigo to Kityerera

Kityerera Sub-county Propagated Outbreak

9th Aug. mother of two travels from Nakigo to Kityerera
Kityerera Sub-county Propagated Outbreak

9th Aug. mother of two travels from Nakigo to Kityerera
Kityerera Sub-county Propagated Outbreak

9th Aug. mother of two travels from Nakigo to Kityerera

Kityerera Sub-county Propagated Outbreak

9th Aug. mother of two travels from Nakigo to Kityerera
Kityerera Sub-county Propagated Outbreak

9th Aug. mother of two travels from Nakigo to Kityerera

Kityerera Sub-county Propagated Outbreak

9th Aug. mother of two travels from Nakigo to Kityerera

9th Aug. mother of two travels from Nakigo to Kityerera
Kityerera Sub-county Propagated Outbreak

9th Aug. mother of two travels from Nakigo to Kityerera

Kityerera Sub-county Propagated Outbreak

9th Aug. mother of two travels from Nakigo to Kityerera
Kityerera Sub-county Propagated Outbreak

9th Aug. mother of two travels from Nakigo to Kityerera
9th Aug. mother of two travels from Nakigo to Kityerera
Kityerera Sub-county Propagated Outbreak

9th Aug. mother of two travels from Nakigo to Kityerera
Kityerera Sub-county Propagated Outbreak

9th Aug. mother of two travels from Nakigo to Kityerera

9.8.16 Mother travelled with 2 babies from Nakigo
Propagated Measles Outbreak

Date of Rash Onset

14-Oct. 16 Outbreak Declared
17-Oct. 16 Start of Investigation

PIRI

Measles cases

Conclusions

- Malongo & Kityerera sub-counties most affected with 0 – 59 months as most affected age group
- Vaccine effectiveness low, 69%
- Vaccination coverage low at 68%
- Propagated outbreak, community transmission
Recommendations

- Strengthen surveillance
- Identify under-five children, have them vaccinated
- Given low vaccine effectiveness, introduce 2nd dose of measles
- Intensify vaccination services provision in the affected sub-counties
Public Health Actions

- Surveillance has been intensified in the district
- Intensification of measles vaccination in the district, among those aged 0 – 59 months
Acknowledgment

- DHT Mayuge District
- US CDC
- MakSPH
- PHEOC – MOH
- UVRI
- PHFP Secretariat
Epidemic Curve Propagated Measles Outbreak

59

Propagated Outbreak in Malongo Sub-County

Epidemic Curve Malongo Sub-county

Date of Rash Onset

Measles cases

Epidemic Curve Malongo Sub-county